

1 | P a g e

TMS Poly List Controls

Introduction

Something that immediately draws the attention in Office 2010 is the new application

menu. It is a very clearly laid out page of the various actions and options that can

chosen & configured from there. On closer inspection, it is really packed with specific

& very different user interface elements. To name just a few: small buttoned item,

large buttoned item, dropdown list, check list, inplace edit controls, fixed items,

formatted text items and so on.

TMS Poly List controls offers the capability to create such modern & fresh user

interfaces to Delphi & C++Builder. A lot of thought went particularly into making

such user interfaces easy and fast. We wanted to offer a solution that allows you to

create a full & finished user interface in less than one hour. It should be a solution

where you do not need an additional designer to work for hours to get everything

look "right". Also, it is our understanding that such solution can be used in way more

scenarios than just for building an application menu for a ribboned application and

this is what the sample in this article demonstrates.

Architecture

Although the user interface elements are quite different in the application menu,

many behaviors are common, like mouse hovering, mouse selection, focusing, .. as

well as many style elements like normal state appearance, selected state

appearance, hovered state appearance. Another thing that is common is that most

items are treated as lists. Therefore, the basis of the architecture is a polymorph list

of items descending from the TCustomItem class. The TCustomItem class knows of

the minimum required common mouse, keyboard, selection, painting handling. From

TCustomItem, we already created a wide range of ready to use classes:

2 | P a g e

TMS Poly List Controls

 TButtonItem: Item with associated button, text

 TCheckItem: Item with checkbox, text

 TRadioItem: Item with radiobutton, text

 TGroupItem: Item with group caption and area that can be used to host

another control

 TDropDownItem: Item with text and dropdown button. A new polymorph list

of items can be shown from the dropdown

 THTMLItem: Item with capability to show HTML formatted text

 TImageItem: Item with image and text and various positioning methods for

image versus text

 TLargeButtonedItem: Item with large button with image

 TImageTextItem: Item with text and image and different positioning for

image versus text

 TTextItem: Item with text and optional description line

 TImageTextButtonItem: Item with associated button, text and image

 TWedgeItem: Variation of TTextItem with selection displayed with wedge on

any of the 4 sides of the item

 TExpandableImageSectionItem: Item with image and text and button that

can collaps or expand different items under the item

 THTMLSectionItem: Section item with HTML formatted text

 TImageSectionItem: Section item with image and text

 TImageTextButtonSectionItem: Section item with image, text and additional

button

The design becomes really interesting knowing that with each item a control can be

associated. Thus, a polymorph list control can in turn host inside an item or multiple

items other polymorph lists or the TDropdownItem class allows to show a new

polymorph list upon clicking its dropdown button. In addition, new classes

descending from TCustomItem or any of the existing item classes can be created and

registered. We have implemented each descending class in a separate unit. One of

the advantages of this choice is that only the classes effectively used will be linked

with your application. In the future we or you can create very specific custom item

classes but these will not affect at all an application that is not using them.

Various list control types

Managing the polymorph list of items in memory is one thing, for actually displaying

the items, we provide several controls. The base class that manages the list is

TCustomItemsContainer. This holds & manages the list of items. We have provided 5

controls descending from this:

 TAdvVerticalPolyList: A scrollable list of items vertically (ie. under each other)

organised

 TAdvHorizontalPolyList: A scrollable list of items horizontally (ie. next to each

other) organised

 TAdvPolyList: A grid structure of items with configurable number of columns

or rows

 TAdvPolyBox: A control in which items can be absolutely positioned

 TAdvPolyPager: A page control where a vertical list of items can be used to

select a page

3 | P a g e

TMS Poly List Controls

Using any of these controls is no more difficult than dropping it on the form, double

click to start the designer, pick from a visual list of available item types and drag in

the list preview. Click the item in the list preview and use the Object Inspector to set

its properties.

This sample code snippet shows how an item can be added in code:

uses

 GDIPHTMLItem;

var

 hi: THTMLItem;

begin

 hi := THTMLItem(AdvVerticalPolyList1.AddItem(THTMLItem));

 hi.Caption := 'Hello world';

end;

The TMS PictureContainer to reuse images

In modern user interfaces, PNG images have almost become the norm. The

PictureContainer component offers one central repository of images used in the

application. It can be placed on a datamodule for example and reused in several

forms to avoid inflating the DFM file with images that are used multiple times. The

PictureContainer can host images of several sizes mixed contrary to a TImageList.

Each image in the PictureContainer has an identifier name and with this name, the

image can be chosen for an item. The TMS Poly List controls have all built-in support

to work with the TMS PictureContainer component.

4 | P a g e

TMS Poly List Controls

Putting it all together: creating a pager with sections

TAdvPolyPager is the control we can put at work to create a pagecontrol where the

tabs to select a page are poly list items. This has the advantage that we can organize

the pages in sections and display rich information on sections and tabs. To make all

steps in setting up the control very clear for this article, everything is done in code.

First of all, the TGDIPictureContainer is created and filled with images:

var

 pc:

 procedure LoadPicture(imagefile, imagename: string);

 begin

 with pc.Items.Add do

 begin

 Picture.LoadFromFile(imagefile);

 Name := imagename;

 end;

 end;

 pc := TGDIPPictureContainer.Create(self);

 // assign created PictureContainer to the PolyPager

 AdvPolyPager1.ListPictureContainer := pc;

 //this command loads one image from file

 //in the PictureContainer and sets the name

 LoadPicture('.\group_24.png','group');

Next, the TAdvPolyPager is filled with an expandable section item and two normal

image items below this section item. Note that for the section item, a status indicator

is set and that images from the PictureContainer are assigned via Item.ImageName:

// create and add item of class TExpandableImageSectionItem

eisi := TExpandableImageSectionItem(

 AdvPolyPager1.AddItem(TExpandableImageSectionItem));

eisi.Caption := 'Email items';

// set the status indicator text for the item

eisi.Status.Caption := '2';

eisi.Status.Visible := true;

eisi.ImageName := 'folder'; //set image name from PictureContainer

// create and add item of class TImageTextItem

iti := TImageTextItem(AdvPolyPager1.AddItem(TImageTextItem));

iti.Caption := 'Business account';

iti.ImageName := 'group';

iti := TImageTextItem(AdvPolyPager1.AddItem(TImageTextItem));

iti.Caption := 'Personal account';

iti.ImageName := 'admin';

Finally, the pages are created that are linked with the TImageTextItem instances in

the list. The sections can be clicked to expand/collaps the TImageTextItem instances

but it will not affect the active page. Clicking on the TImageTextItem instances will

change the selected page. Therefore, we need to link an item to a page. This is done

5 | P a g e

TMS Poly List Controls

with the method AddAdvPolyPage that creates a page and links it to the item passed

via the 2nd parameter:

 AdvPolyPager1.AddAdvPolyPage('One',AdvPolyPager1.Items[1]);

Here a page is created and linked to the 2nd item in the list, ie. the first

TImageTextItem. Access to the created pages is provided via:

AdvPolyPager1.AdvPolyPages[index]

Each page can have its own complex fill. To set a gradient background for each page,

we can use:

 AdvPolyPager1.AdvPolyPages[index].PageAppearance.Color := clWhite;

 AdvPolyPager1.AdvPolyPages[index].PageAppearance.ColorTo := clYellow;

For this demo, we simply create a label for each page added:

 procedure CreateLabel(pp: TWinControl; Caption: string);
 begin

 lbl := TLabel.Create(pp);

 lbl.Parent := pp;

 lbl.Caption := Caption;

 lbl.Font.Size := 12;

 lbl.Top := 10;

 lbl.Left := 10;

 end;

 CreateLabel(AdvPolyPager1.AdvPolyPages[1], 'Personal emails');

Finally, the active page is initialized in code via:

 AdvPolyPager1.ActivePageIndex := 1;

The result obtained is:

6 | P a g e

TMS Poly List Controls

Download a trial version of TMS Advanced Poly List at

http://www.tmssoftware.com/site/advpolylist.asp

TMS software main website

http://www.tmssoftware.com/

http://www.tmssoftware.com/site/advpolylist.asp
http://www.tmssoftware.com/

